The NanoAssemblr™ Platform: Microfluidics-Based Manufacture of siRNA Nanoparticles

Colin Walsh, Ph.D.
University of British Columbia

Controlled Release Society
2013 Annual Meeting
July 23, 2013
Nanoparticle Drug Development Process

Current nanoparticle manufacturing techniques limit innovation

- Poorly controlled processes
- Limited application for biologics (nucleic acids, proteins, peptides)
Microfluidics Enables Exquisite Process Control

Molecular Self-Assembly

- Control: laminar flow
- Nanoliter reaction volumes
- Rapid mixing: $\text{Time}_{\text{mix}} < \text{Time}_{\text{ppt}}$
- Low energy input
- Readily scalable
The NanoAssemblr™:
Microfluidics Enables Smarter Nanoparticles

- Enable rapid nanoparticle prototyping
- Remove process variability
- Robustly manipulate single variables
- Remove operator variability
- Enable seamless scale-up
The NanoAssemblr™: Rapidly Screen Formulation and Process Parameters
Simple Technology Transfer Between Users and Sites

siRNA-LNP (Cationic Lipid: DSPC: Cholesterol: PEG)

Automated instrumentation removes operator variability
Nanoparticle Drug Development Using the NanoAssemblr™

Rapid formulation and process development
Small Scale Formulation Development

Changing Composition

![Graph showing the effect of PEG-Lipid content on diameter and PDI.]

- **siRNA-LNP (Cationic Lipid: DSPC: Cholesterol: PEG)**

 - Diameter (nm)
 - 1.0
 - 2.5
 - 5.0

 - PDI
 - 0.00
 - 0.02
 - 0.04
 - 0.06
 - 0.08
 - 0.10

 - PEG-Lipid Content (mol %)
 - 0
 - 10
 - 20
 - 30

- **Removal of process variability allows for rational formulation optimization**
- **Robustly manipulate single variables in nanoparticle composition**
Removal of process variability allows for rational process optimization

- Robustly manipulate single variables in process

Small Scale Process Development

Changing Process

siRNA-LNP (Cationic Lipid: DSPC: Cholesterol: PEG)

![Graph showing the relationship between Flow Rate (mL/min) and Diameter (nm).](image)

- Flow Rate (mL/min): 0, 4, 8, 12, 16, 20, 24
- Diameter (nm): 100, 80, 60, 40, 20, 0

- Removal of process variability allows for rational process optimization
- Robustly manipulate single variables in process
Formulation & Process Manufacturability Assessment

Design of Experiment (DoE) variables

– Lipid Concentration
– Flow Rate
– Mixing Conditions
– Lipid:siRNA Ratio

Stable Results = Robust Process = Scalable Process
Nanoparticle Drug Development Using the NanoAssemblr™

Seamless process scalability makes small scale results more relevant
Continuous flow system:
✓ Rapidly achieves steady state
✓ Maintains particle quality with scale
✓ siRNA encapsulation efficiency > 94% in all fractions
Microfluidics as a Scalable Manufacturing Platform

Parallelization facilitates large volume production with *identical* reactor conditions.
Processing Final Drug Product

Final RNA Concentration = 0.96 mg/mL
siRNA Encapsulation Efficiency = 96%
Nanoparticle Drug Development Using the NanoAssemblr Platform

Conceptual Drug Product → Formulation → Process → Manufacturability → Scale-up → Final Drug Product
Acknowledgements

Precision NanoSystems

Euan Ramsay
James Taylor
Nathan Belliveau
Andre Wild
Tim Leaver
Kevin Ou
Aysha Ansari
David Zwaenepoel

University of British Columbia

Prof. Pieter Cullis
Prof. Carl Hansen
Igor Zhigaltzev
Chris Tam
Genc Basha
Paulo Lin

Chen Wan
Alex Leung
Justin Lee
Sam Chen
Ismail Hafez
The NanoAssemblr™ Platform
✓ Microfluidics-based nanoparticle manufacturing process
✓ Rationally engineered nanoparticle systems
✓ Automated instrumentation, precise process control, rapid prototyping
✓ Seamless scale-up

Come see the NanoAssemblr™ at BOOTH # 307

WE’RE HIRING

Contact
James Taylor
jtaylor@precision-nano.com

Colin Walsh
walshcol@mail.ubc.ca

www.nanoassemblr.com
Microfluidics Enables Manufacture of Potent LNP siRNA Systems

![Graph showing Relative FVII Protein Level (%) vs N/P Molar Ratio (Cationic lipid amine/ siRNA phosphate)]